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FREQUENCY RESPONSE FUNCTIONS AND COHERENCE FUNCTIONS 

FOR MULTIPLE INPUT LINEAR SYSTEMS 

1. INTRODUCTION 

The main object of the subsequent discussion is the consideration 

of multiple input linear system frequency response functions and 

associated applications of coherence functions. 

output linear systems are fir st described and pertinent definitions 

and formulas presented. 

to the multiple input linear system material. The coherence function 

for the single input-single output case is  defined, and the behavior of 

thi.s function is found for situations where noise is occurring in either 

o r  both the input and output measuring devices. 

demonstrates that the coherence function is a useful parameter in 

determining confidence limits for measurements of the gain factor 

and the phase angle of a linear system frequency response function. 

Single input- single 

These initial sections serve a s  an  introduction 

This presentation 

4 U T M R  
Multiple input linear systems with a single output a r e  then 

discussed. 

functions, autocorrelation functions, frequency response functions, and 

coherence functions in both the situation where the inputs a r e  cor re-  

lated and the situation where the inputs a re  independent. 

tion of the multiple input linear system case requires application of 

multi-dimensional random process theory. Also, complex variable. 

multi-variate statistical analysis becomes extremely helpful here  in 

that several  pertinent analogies may be drawn which lead to significant 

results.  

Important formulas a r e  given for power spectral  density 

The considera- 

A central problem is that of the application of the coherence 

function as a detector of other inputs not being considered when only a 

single input and a single output a r e  being measured. The system under 



consideration is assumed to be a constant parameter linear system 

with no noise occurring in the input or output measurements.  I t  is 

shown that the ordinary coherence function will take on values l e s s  

than unity when other inputs a r e  occurring which a r e  not being con- 

sidered. 

and independent cases  requires calculation of more  complicated 

partial coherence functions. 

functions is explained here  f rom basic principles. 

Full knowledge of these other inputs for  both correlated 

The concept of partial  coherence 

Finally, a numerical engineering example is worked through to 

illustrate the various concepts and formulas develsped in the theory. 

In the numerical example, both the case of correlated inputs and 

independent inputs a r e  computed for the two input- single output linear 

system. 

cases, the amount of computation involved for this type of problem 

i s  considerable so that a digital computer is an invaluable tool for 

these problems. 

It becomes immediately apparent that even in the simplest 
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2 .  PROPERTIES OF FREQUENCY RESPONSE FUNCTIONS 

Consider a physically realizable linear system which does not 

have any t ime varying parameters.  The weivhting function h(T) 

associated with this system is defined as the response (i. e . ,  the output 

function) of the system to a unit impulse input function and is measured 

as a function of time, T ,  f rom the moment of occurrence of the impulse 

input. 

for  T < 0 since the response must  follow the input. The usefulness of 

the concept of the weighting function is due to the following fact: the 

l inear system is completely characterized by its weighting function in 

the sense that given any arbi t rary input x(t) known as a function of 

t ime t for  all t ,  the system output y(t) is determined by the equation 

For  physically realizable systems, it is necessary that h(T)= 0 

That i s ,  the value of the output function, y(t), a t  time t is given as 

a weighted linear (infinite) sum over the entire past history of the 

input x(t). Note that Eq. (1) is a convolution integral. 

If x(t) is an input to the system for only a finite fixed t ime T ,  

then 

y(t) = h(T)X(t - T )  dT ( 2 )  k 
If x(t) .exists only for t > 0, then 

3 



The linear system may alternatively be characterized by i ts  

frequency response functioi H!f) which is defined as the Fourier 

transform of h(T), namely, 

- j 2 ~ r f ~  dT 
(4) 

where f is measured in cycles per  unit time. The lower limit is 

zero instead of -a3 since h(T) = 0 for T 0. The replacement of the 

weighting function with the frequency response function may be made 

since there is a one-to-one correspondence between classes  of suitably 

restricted functions and their Fourier transforms. That is, two 

different weighting functions will not give the same frequency response 

function. The restrictions on h(T) a r e  that h(T) and i ts  derivative 

h'(T) must  be piecewise continuous on every finite interval (a, b), and 

that [ h(T)1 must be integrable on (-03, 03 ) .  It  should be noted that the 

frequency response function is a special case of the t ransfer  function 

of a system given by the Laplace transform of h(T) 

e 

complex variable. 

in which case 
- j25r f~  

in Eq. (4) is replaced by emPT where p is a general 

The frequency response function is of great interest  since i t  

contains both amplitude magnification and phase shift information. 

Since H(f) is complex valued, the complex exponential (polar) 

notation may be used. That is, 

where IH(f)( is the absolute value of H(f) and +(f)  the argument of 

H(f). The absolute value, I H(f)l , measures  the amplitude magnifi- 

cation at  frequency f when the input to the system is a sinusoid of 

frequency f while +(f) gives the corresponding phase shift. 

4 



Certain symmetry properties a r e  worthwhile to note, namely, 

dT = H(-f) ( 6 )  
.lr 

This relation gives 
H*(f) = I H(f)( e - jW) 

H(-f) = IH(-f)l e j+( -f)  

which implies 

and 

Another important relationship -3r constant parameter linear 

systems satisfying Eq. (1) is that given the input x(t), the weighting 

function h(t), and output y(t), then their Fourier transforms satisfy 

the simple product relation 

Y(f)  = H(f)X(f) (9) 

This is a general result for convolution integrals like Eq. (1). 

follows that if one linear system described by H ( f )  is followed in 1 
succession by another linear system H ( f ) ,  then the over-all system 

i s  described by H(f) where 

It  

2 

i f  there is no loading or  feedback between the two systems. 

implies 

This 

+(f) = 4qf) + +2(f) (12) 

so that in  cascaded linear systems without loading o r  feedback, the 

amplification factors multiply and the phase shifts add. 

5 



3 .  RELATION TO POWER SPECTRA AND CROSS-POWER SPECTRA 

Assume that x(t) is a representative member from a stationary 

Then the same properties a r e  random process  with zero mean value. 

true (se.e Ref. 

important relation then holds between the ordinary one-sided power 

spectral density functions G ( f ) ,  G ( f ) ,  defined for  f 2 - 0 ,  and the 

frequency response function H(f). This relation is 

1 1 )  for  the output y(t) of the linear system. A very 

X Y 

That i s ,  at any given fixed frequency f ,  knowledge of two of the quan- 

tities determines the third. Note, however, that the phase shift, +(f), 

does not enter into this relationship. 

However, one may verify (see Ref. [ 11 ) that the complete 

frequency response function is related to the input spectral  density 

G (f)  and to the cross-power spectral density G 

input and output). 

( f )  (between the 
X X y  

This simple (complex valued) formula is 

G ( f )  = H(f) G ( f )  (14) 
XY X 

Rewriting in  the complex exponential notation, 

which implies 

and 

6 



Therefore, with knowledge of the input power spectra and the 

cross-power spectra, the frequency response function is  completely 

determined both as to amplitude magnification and phase shift. Note 

that several  physical applications a r e  immediately suggested. 

example, the simple and cross-power spectra for random inputs may 

immediately be applied (if known either theoretically o r  experimentally) 

to completely determine the constant parameter linear system in 

t e r m s  of its frequency response function. Knowledge of the amplitude 

magnification and phase shift of the system may then be applied to 

various engineering problems such as specificiations writing for a 

piece of equipment to be located on this system. 

t ime delays occurring in  a system may be determined with knowledge 

of the phase shift which occurs. That is ,  phase shift (cycles) divided 

For  

I 
Also, for  example, , 

~ 

, by frequency (cycles/unit time) gives the time shift. One must 
I always bear  in mind the assumptions being made when applying any 

of the above formulas to physical problems. 

remembered that the above results assume 

It must  always be 

1) a constant parameter l inear system, 

2) a n  input which is a stationary random process.  

7 



4. COHERENCE FUNCTIONS 
2 

XY 
The coherence function is a rea l  valued quantity y ( f ) ,  

defined as 

The coherence function may be thought of as the ratio of two estimates 

of the square of the transfer function gain factor. 

consider Eq. 

To be specific, 

(13) as giving one estimate 

and Eq. (15) a s  giving a second estimate 

The hat ( A )  above the symbols is to indicate "estimate of". 

takes the ratio of these two estimates, the coherence function is then 

obtained 

If one 

One should note f rom these equations the absolute necessity of 

satisfying underlying assumptions when applying various formulas. 

The transfer function is an inherent property of a linear system, and 

although Eqs. (13) and (15) give formulas for the transfer function 

of a linear system under the proper conditions, they a r e  not correct  

8 



formulas under other situations. 

the subsequent discussion. 

This will be specifically shown in 

The cross-power spectra may be shown to satisfy the inequality 

I 

Note that for a linear system, Eqs. ( 1 3 )  and ( 1 5 )  apply and may 

be substituted into Eq. (17) which gives 

Thus, the coherence function may be thought of a s  a measure of linear 

relationship in the sense that the function attains a theoretical maxi- 

mum of unity for  all f in  a linear system. Hence, if the coherence 

function is less  than unity, one possible cause is that there is not 

complete linear dependence between input and output. However, the 

reverse  statement does not immediately follow. That i s ,  the above 

argument does not prove that i f  the system is nonlinear, the coherence 

function necessarily is l e s s  than unity. 

9 



5. NOISE MEASUREMENTS O F  FREQUENCY RESPONSE FUNCTIONS 

The effect of additive noise on frequerxy respsiise function 

estimates will now be indicated. 

role in these considerations. Three cases  a r e  considered: 

The coherence function plays a crucial 

1) uncorrelated noise occurring in  the input measuring device, 

2) uncorrelated noise occurring in  the output measuring device, and 

3)  uncorrelated noise occurring in both the input and output 
measuring devices. 

The third is clearly the most  important and contains the other two as  

special cases.  

5.1 NOISE I N  BOTH INPUT AND OUTPUT MEASURING DEVICES 

For  this case the measured input x(t) and measured output 

y(t) a r e  composed of the t rue signals u(t)  and v(t) and noise com- 

ponents n(t) and m(t) ,  respectively. 

The measured input and output a r e  given by 

The spectral  relations a r e  

G (f)  = G (f)  t G (f )  
X U n 

G (f)  = G ( f )  t Gm(f) 
Y V 

G ( f )  = G (f) 
X y  uv 

10 



The coherence function for this case i s  

2 IG p2 IG uv ( f ) I 2  
- - X 

Gx(f) Gy(f) [ G ( f )  t G ( f ) ]  [G (f)  t Gm(f)] 
y ( f )  = 

U n V 
XY 

< 1  1 - - 

where 

G1 = G (f )  N = G ( f )  1 n  

N2 = G ( f )  G2 = G ( f )  

U 

m V 

This formula illustrates the behavior that would be expected when 

reasoning from the two simpler cases ,  namely, as the instrument 

noise to input and output signal ratio decreases, the coherence function 

approaches unity. 

Simple formulas directly relating the coherence function and gain 

factor estimates to the true gain factor do not exist for this general 

case as will be shown to exist for the special cases.  

formulas a r e  useful and a r e  given below. 

However, certain 

11 



or  

Also, 

or 

5.2 NOISE IN INPUT MEASUREMENT ONLY 

The special case of noise in the input measurement only co r re s -  

ponds to N = G (f )  = 0 which implies y(t) = v(t). The formula for 

the coherence function given by Eq. (25) therefore becomes 
2 m  

< 1  
2 1 

Yxy(f) = 
1 + [G n ( f ) / G  U (f)]  

This relationship shows clearly that any noise present in the input 

measuring device reduces the coherence function to less  than unity. 

Also, a s  the input signal to measuring device noise ratio becomes 

small, the coherence function becomes small. If the noise power 

spectral density function is much l e s s  than the signal power spectral  

density function, that is G ( f )  << G (f), then Eq. 

a simpler form, namely, 

(28) may be put in 
n U 

12 



A 
Equation (26) which relates IH(f)l t o  I H(f)12 simplifies for 

this case to 

A 

Also, Eq. (27) relating I H(f)I to the f i r s t  estimate, I H(f) I 
simplified by noting that 

may be 
1 '  

G (f )  
(31) 

U - -  
G (f)  

U - - 2 

'Xy G (f)  t G ( f )  G ( f )  
U n X 

The following result is then obtained. 

(32) 

5.3 NOISE IN OUTPUT MEASUREMENT ONLY 

The special case of noise in the output measurement only cor res -  

ponds to N = G ( f )  = 0 which implies x(t) = u(t). It follows that the 

coherence function between x(t) and y(t) is given by the following 

special case of Eq. (25) 

1 n  

As  in  the first special case,  if any noise is present, the coherence 

function is strictly l e s s  than one, and is  inversely proportional to the 

output measuring device noise to true output signal ratio. 

13 



If G ( f )  << G (f), then n V 

2 
Xy  

Y ( f ) %  1 - [ Gn(f)/G V ( f ) ]  

The specialized relations analogous to Eqs. 

(34) 

(30) and (32) a re :  

(35) 

The above relation, Eq. 

cross  spectral  estimate gives a direct  measure of the gain factor. 

However, it is pointed out in Section 6 that reduced statistical con- 

fidence must  be placed on the measurement when the coherence 

function becomes l e s s  than unity. 

( 3 6 )  , would appear to indicate that the 

14 



6. CONFIDENCE LIMITS BASED ON COHERENCE FUNCTION 

For  the cases  considered above, an estimate of the true frequency 

response function may be obtained from the measured functions 

G ( f )  and G ( f ) .  Let the measured frequency response function be 
XY X 

It is mentioned in Section 4.3 that although Eq. (36) apparently 

gives a direct  estimate of H(f), reduced statistical confidence must 

be placed on the results. 

shown (Ref. [2]) that to a very close approximation, 

This is  illustrated as  follows. It has  been 

where k is the number of degrees of freedom (d . f . ) .  

The number k is given by 

2N k = 2BT = - 
m 

B = bandwidth 

T = total record length in time 

N = total number of observations 

m = maximum l a g  number in autocorrelation 
estimate. 

( 3 9 )  

Equation ( 3 8 )  is displayed in Figure 1 which follows, with k as a 

function of y (f) .  Figure 1 gives three sets  of curves,  one set  for 2 

XY 

15 



. 1  . 2  . 3  . 4  . 5  . 6  .7 

Coherence Function, Y * 
.8 

DATA FOR FREQUENCY RESPONSE F'UNCTION 
MEASUREMENT CONFIDENCE 

FIGURE 1 
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P = .90, P = .85, and P= .80 when E = .05 radians; one set when 

E = .10 radians; and, one set  when E = . 15 radians. Since sin E %E 

fo r  these small values of E ,  the curves a re  satisfactory for a gain 

factor accuracy of 5, 10, and 15 percent, and a phase angle accuracy 

of .OS, . l o ,  and .15 radians which are approximately 2.9, 5.7, and 

8.6 degrees. 

The application of these curves to determine a sample size 

necessary to measure a frequency response function with a desired 

accuracy is somewhat limited at t imes.  This is due to the fact that 

the coherence function is not known in advance, and therefore must  

be estimated. However, a conservative choice is usually in  order .  

In  this case the above relations will be practical guidelines. 

6.1 APPLICATION TO ITERATIVE DETERMINATION O F  H(f) 

A possible application of the coherence function is as follows. 

Suppose a linear system is under consideration, and it is desired to 

estimate the frequency response function with a known accuracy. 

F i r s t ,  one would measure the coherence function by measuring the 

input and output power spectra separately as-well  as the input/output 

cross-power spectra. Now, with a f i rs t  estimate of the coherence 

function, the approximate number of degrees of freedom needed to 

measure the frequency response function to the accuracy desired 

would be determined. Next, H(f) is estimated under these experi- 

mental conditions. A new coherence function measurement would 

now be available giving improved information and the process  could 

be repeated, continuing the iterations until desired resul ts  were 

obtained. 

17 



6 . 2  NUMBER OF DEGREES-OF-FREEDOM FOR GIVEN 
CONFIDENCE 

A second application of Figure 1 is as follows. Suppose the 

measuring instrument noise is known, o r  is estimated. Also, assume 

that based on this knowledge and approximate expected power spectra 

of the input and output, the coherence function of the system is 

estimated to be y = 0.8. Now assume that a maximum 5 percent 

e r ror  in the gain factor measurement with a corresponding maximum 

three-degree e r r o r  in the phase is considered acceptable when there 

is a confidence of 90% of measuring these quantities that accurately. 

That is, y (f)  = .8, E = .05, and P = .90. How many degrees of 

freedom a r e  needed for the measurements? 

the y = . 8  value, and the intersection with the top curve co r re s -  

ponding to P= .90 and c = .05 is noted. The value of k is then read 

off the vertical scale which is approximately k= 240. Therefore,  

about 240 d.f. 

function under these given conditions. 

2 

2 
X y  

Figure 1 is entered a t  
2 

a r e  needed to measure the frequency response 

6 . 3  ELIMINATION OF INSTRUMENT NOISE I N  MEASUREMENTS 
O F  H(f) 

As can be seen from the preceding analysis, the coherence 

function is a useful quantity in the general consideration of frequency 

response functions and their measurement. I f  the noise in the input/ 

output measuring equipment is known, then the frequency response 

function can be properly determined. However, from the 

formulas given, quite misleading and biased results could be 

obtained if  no attention is paid to measurement noise. 

assume one wants to experimentally determine in  the laboratory the 

frequency response function of a l inear system. 

in  the output measuring device is known to be negligible, but the 

For  example, 

Assume the noise 

18 



input device noise is not. 

First one must  determine the input measuring device noise power 

spectral density which should be approximately constant for most 

situations. Then one must apply a stationary random input to the 

system and determine the input and output power spectral density 

functions. From knowledge of these quantities, Eqs. (18), ( 2 8 ) ,  

and (32 )  could be applied to determine the gain factor as well as 

knowledge of the uncertainty in its measurement. 

Then the formulas for Case 1 would apply. 

19 



7. MULTIPLE INPUT LINEAR SYSTEMS 

The situation of a linear system responding to multiple inputs 

wil l  now be considered. I t  will be assumed that N inputs a r e  

occurring with a single output being measured. 

the coherence function plays an  important role for this analysis. 

be specific, if it is assumed that the particular system between one 

of the inputs and the output is linear constant parameter,  and that 

negligible measurement noise is present, then a low coherence 

function between this input and the output will serve to indicate the 

presence of other inputs which contribute to the output but a r e  not 

being con side r ed . 

It will be shown that 

To 

7.1 MULTIPLE CORRELATION AND POWER SPECTRA RELATIONS 

Consider a constant parameter l inear system with N inputs 

xi(t) , i = 1 ,2 ,  

will be made that the output may be considered as the sum of the 

N outputs y . ( t ) ,  i = 1, 2 , .  . . , N. That is 

. . , N and one measured output y(t). The assumption 

1 

N 

where y.(t)  is defined as that par t  of the output which is produced 

by the ith input, x.(t) ,  when all the other inputs a r e  zero. 

Figure 2 .  

1 

See 
1 

20 



x2(t)+d-= 

0 1 0 

0 1 
0 1 0 

0 

I \ 

Figure 2. Block Diagram of Multiple Input Linear System 

The function h.(T) is defined as the weighting 

associated with the input x.(t). Hence, yi(t), f rom 
1 

1 

by 
03 
r 

function which is 

Eq. ( l ) ,  is given 

Also, the frequency response function is given by Eq. (4)  and the 

relation between Fourier  transforms of the input and output is given 

by Eq. (91, namely, 

Yi(f)  = H.(f)X.(f) 1 1 (42) 

The Fourier  transform, Y ( f ) ,  of the total output then is 

N N 

Y(f )  = z Yi(f) = H.(f) 1 X.(f)  1 
i= 1 i= 1 

(43) 

21 



Assume next that the x.( t )  a r e  representatives from stationary 
1 

random- processes with m e a n  values m that i s ,  i ’  

m i = E[x.(t)] 1 (44) 

Recalling that the expected value operator is linear, the expected 

value of y(t) then is obtained as 

I N o o  

E[y(t)]= E [ h.(T)X.(t 1 1 - 7) dT 
i=l 0 

N o o  

= hi(T)E[x.(t 1 -T)]dT 
i=l 0 

The autocorrelation function, R ( T ) ,  may also be computed. 
YY 

Assuming that the process is  stationary, one finds 
r 1 

22 



In Eq. (46), R..(T) is defined as  
1J 

Equation (46) is a general result for  correlated inputs. 

If i t  is assumed that all the various inputs a r e  mutually un- 

correlated, and in addition all have zero means, then 

Rii(r) when i = j 

0 when i # j i R..(T) = 
1J 

(48) 

# In  this case Eq. (46) simplifies to 

The power spectra relations will now be computed. For  

stationary random processes the two-sided power spectral  density 

function S ( f )  which is defined for -m< f <oo is given as  the 

Fourier  transform of the correlation function R (7). Therefore, 

the Fourier transform of R ( T )  as  given by Eq. (46) will yield 

the desired power spectral density function. 

YY 

YY 

YY 
Thus, 

00 

- j 2 ~ f ~  
YY 

s ( f )  = 
-03 YY 

The one-sided realizable power spectral density function 

G ( f )  = 2s ( f )  for f >  - 0, and is zero for f <  0 .  
YY YY 

23 



To simplify Eq. (50), one notes that the factor 

e e = I  may be inserted, and the equation then 
- j 2 r f (  a- p) j 2 r f (  a- p) 

becomes 

Now, the change of variable t = CY - p t T, dt = dT, is made and Eq. (51) 

may be factored to give 

8 

1 1 
In Eq. (52), H. ( f )  represents the complex conjugate of H.(f)  and 

Eq. (6)  has been applied. Also, S. .(f) represents the cross-power 

spectral density function between the inputs x.(t)  and x.(t). That is, 
1J 

1 .l 
S..(f) 5 S (f) .  In Eq. (52), realizable one-sided spectra G ( f )  

YY X.X. 
1 J  

1J 

and G..(f) where 0 5 f < 00, can replace S ( f )  and S..(f) since 

the common factor of two cancels out. Equation (52) is a general 

result for correlated inputs. 

1J YY 1J 

This equation may now be specialized to the uncorrelated and 

zero means case where the autocorrelation function is given by Eq. (49).  

With these assumptions, Eq. (52) becomes 

N 

S ( f )  = 1 lH.(f)12S..(f) 
1 11 

i= 1 YY 
( 5 3 )  

24 



where the fact has  been employed that i f  z is a complex number then 

zz = I z 1 
obtaining the above spectral relations a re  exactly the same as used 

in obtaining the single input/ output relation given by Eq. (1 3 ) .  

Observe that one may replace S(f) with G(f) in Eq. (53) since the 

factor of two will cancel. The relations given above in Eqs. (52) 

and (53) in fact represent the analogs to Eq. (13) with Eq. (53) 

exhibiting the most  similar form. 

2 * I- . One should note that the basic procedure used here  for 

7 . 2  MULTIPLE CROSS-CORRELATION AND CROSS-POWER 
SPECTRA RELATIONS 

The cross-power spectral relation corresponding to Eq. (14) 

is obtained in a similar manner. 

cross-power spectral density function S ( f )  = S.  ( f )  of the output 

y(t)  with one of the inputs, say xi(t). 

correlated inputs is 

Here, one wants to calculate the 

XiY 1Y 

The general result for 

N 
P 

This equation is derived in a manner similar to the simple spectra 

formula as follows: 

- j 2 ~ f ~  
R. ( 7 )  dT 

1Y 
s. ( f )  = 

-0O 1Y 
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where the fact has been employed that the cross-correlation function 

R.(T) is given by 
1Y 

r 

00 
c 

= f r h . ( a ) R . . ( ~ - u )  J 1J da 
j = l  0 

(55) 

If it is assumed that the inputs a r e  independent and have zero 

means, then Eq. (55) reduces to 

Hence, the c ross  spectral input/output formula given by Eq. (54) 

becomes 

S .  ( f )  = H.(f)Sii(f) 1 (57)  
1Y 

This is a very interesting result  since it implies that the frequency 

response characteristics for  the structural  path associated with the 

input, x.(t), can be measured by means of the cross-power spectra whether 

o r  not the other inputs a r e  active i f  the inputs a r e  all statistically inde- 

pendent. This result, in one sense, solves the problem of how to 

measure the individual frequency response functions for  the case of un- 

correlated inputs. However, the confidence in the measurement is 

determined by the coherence function as in Section 5. 

1 
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7.3 MATRIX FORMULATION O F  RESULTS 

The preceding formulas can be expressed more  concisely by the 

use of matr ix  notation and, in addition, some further results become 

more  readily apparent. First define an N-dimensional input vector 

Also define an N-dimensional frequency response function vector 

Next, define an N-dimensional cross-power spectrum vector of the 

output y(t) with the inputs x.(t), 
1 

where 
S. ( f )  = S ( f ) ,  i =  1 ,2 ,  .. . , N  

1Y XiY 

Finally, define the NxN matr ix  of cross-power spectra of a l l  the 

inputs xi(t) by 

s (f )  = xx 

where 

i , j =  1 , 2  ,..., N 
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To illustrate the analogous relations to the one-dimensional 

case, consider Eq. ( 1 3 ) .  This may be rewritten a s  

2 
G ( f )  = I H(f) I G X ( f )  = H(f) G X (f)H*(f) (64) Y 

8 
where H (f) indicates the complex conjugate of H(f). Equation (52) 

may now be rewritten in matr ix  form as the quadratic form 

S (f) = H(f)S xx (f)H8'(f) (65) 
YY 

8' 
where H if)  denotes the complex conjugate transpose matrix.  

Writing out in full, Eq. (65) becomes 

. . .  

and the column vector on the right is the transposed complex conjugate 

of H(f). That is 

81 
H (f) = 

2 8  



Note that S ( f )  is still a scalar quantity but the other quantities 

a r e  not. Equation (65) i s  also a proper representation of Eq. (53) 

where the off-diagonal elements of the matr ix  S ( f )  become zero 

for  independent inputs. 

YY 

xx 

In Eq. (54) , the system of equations for i = 1,2,. . . , N may 

be written as the matr ix  equation 

S' ( f )  = S (f)H'(f)  
X y  xx 

This is equivalent to 

where the column vectors a r e  the transposed row vectors of 

and H(f). As before, Eq. (57) has i ts  analogy when S is a xx 
diagonal matr ix  due to independent inputs. 

The mat r ix  equation (67) may be solved for  the transposed 

row vector "(f) if S ( f )  and S ( f )  have been measured o r  a r e  

known. This is, of course, a system of N simultaneous linear 

equations whose solution is 

X y  xx 

"(f) = S-'(f)S' ( f )  (68) 
= X y  

- 1  
xx xx where S ( f )  represents the inverse mat r ix  to S (f) .  Equation (68) 

gives each H.(f) as a function of the input/output cross-power 

spectra S. ( f )  and the input/input cross-power spectra S ( f ) ,  and 

holds whether or not the various inputs a r e  correlated. 

1 

lY i j 
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-1 
The inverse matrix,  Sxx(f) is obtained by dividing the t rans-  

posed adjoint matrix of S ( f )  by its determinant A .  The adjoint 

matrix of S ( f )  is the matrix obtained by substituting the cofactor 

of the element S, . ( f ) ,  written cof s. . ( f ) ,  for the element S. . ( f ) .  

xx 

xx 

1J 1J 1J 

In equation form, this is  

-1 

1 
A 
- - - 

Cof Sll(f)  Cof Szl(f)  

Cof S12(f) 

. . . co 

Methods for  computing the various cofactors and the determinant A 

a r e  available in many references.  

7.4 SPECIAL CASE O F  T W O  INPUTS 

To explain the solution of Eq. (67 )  given by Eq. (68) fo r  the 

case of two input variables, assume a two input system as pictured in 

the sketch below. 
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For this case,  Eqs. (59) through (62) become 

s ( f )  = xx 

The matrix Eq. (67) is 

and its solution is 

=I I 

where A is the determinant of S ( f )  which is 
xx 

(73) 

* 
The quantity 1 S 
Now, the quantities H (f) and H ( f )  will be solved explicitly. 

( f ) l '  is obtained by recalling that S 12 (f)  = S 2 1  (f) .  
12 

1 2 
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The results a r e  

where 

Also, H ( f )  is given by 2 

Note that H ( f )  can be interpreted a s  the ratio of the c ross -  

(f) ,  to the input spectra,  S l l ( f ) ,  both corrected by 
1 

power spectra,  S 

factors which account for the correlation between the two inputs. 

the case of the denominator spectra,  S 

seen to be the coherence function between the two inputs x ( t )  and 1 
x2(t). 

ratio of the cross-power spectra to the ordinary spectra.  

1Y 
In 

(f) ,  the correction factor is 
11 

2 
12 

For the special case y ( f )  = 0, the equation reduces to the 

This is the 
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2 
12 same a s  the case of independent inputs since y 

IS12(f)12 = 0 and therefore S 12 ( f )  = S 21 ( f )  = 0.  

( f )  = 0 implies 

2 
12 The case of y ( f )  = 1 must be handled separately since Eq. (74) 

2 2 
12 is not defined for  this value of y ( f ) .  When y12(f) = I, 

and the determinant A given by Eq. ( 7 3 )  is therefore zero. This 

means that Eqs. (71) a r e  not linearly independent and in fact one is 

a linear combination of the other. 

since a coherence function of unity implies complete linear dependence 

between x ( t )  and x2(t). 

system as existing between x ( t )  and x2(t). 

This is to be expected, of course,  

Therefore one could consider a linear 
1 

See the sketch below. 
1 

I 
The implication would be that the f i r s t  input x (t) was actually taking 

two different paths to a r r ive  a s  the output y(t). For this situation, a 

single frequency response function relates y(t) to x (t)  a s  per 

Eqs. (1) and (9).  The above results illustrate the interpretation of 

the coherence function as giving a measure of linear relation in the 

1 1 
1 i 

I 
~ 

~ frequency domain. 
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2 
12 In a general case where y ( f )  # 0 o r  1, the correction factor 

for the cross-power spectrum, S If' in  the aiimerator or̂  Eq. (74), 

is  seen to be of a similar form to y 

similar way. 

that if one assumes a stationary Gaussian process for  the inputs 

x (t) and x (t) ,  then the numerator and denominator of Eq. (74) 

a r e  the cross-power spectrum and ordinary spectrum of a "conditioned" 

process. That is ,  if one has two processes  x (t)  and x (t) which a r e  

correlated, then x (t) may be used to "predict" x (t) by way of a 
2 1 

linear least  squares regression equation 

1 y '; ' 
( f )  and may be interpreted in a 12 

This point is discussed in Ref. [3] where it is shown 

1 2 

1 2 

A 
x,(t) = kx 2 (t) (77) 

where the constant k is 

lation coefficient r x x  2 1  

determined from u , u , and the cor re-  

by the relation 
1 

X 2 X 

U U 

1 

2 

X X 
- k =  - l r  - -  

U x x  u 1 2  x x2 

U U x x  
(78) 

- 1 2  xlx2 ) - 
u u  2 

U 

2 x1 x2 X 

The result in Eqs. (77) and (78) is derived la ter  in  Eq. (83). The 

correlation coefficient I' is defined in Eq. (81). The function 

x (t), which is the linear 
x x  

least  squares prediction function for A 2 1  
1 

x (t), is called also the regression line for  x (t) on x (t). 
1 1 2 

Consider a new process  consisting of the difference between 
A 

x (t) and its estimate x (t), that i s ,  the residual process  defined by 1 1 

(79) 
AX (t) = x,(t) - xl( t )  0 

1 

34 



Then the denominator quantity 

is  the spectrum of the residual process Ax,(t) of Eq. ( 7 9 ) ,  

the process  resulting f rom x ( t )  after the linear least  squares pre-  1 
diction x ( t )  has been subtracted out from x ( t ) .  This interpretation 

is obtained by applying two-dimensional statistical analysis to the 

"spectral" variables as will be explained shortly, and i s  analogous to 

the la ter  Eq. (84). 

namely, 

A 

1 1 

The "spectral" variable, X(f),  where -a3 < f < a, is defined a s  

the Fourier transform of the observed variable x(t). Note that X(f) 

is in general a complex number and therefore not physically observable. 

I t  may be shown that the power spectral  density function S ( f )  i s  

determined by the variance of the spectral variable X(f) whereas 

u is the variance of the directly observable variable x(t). Then 

xx 

2 
X 

2 ( f )  is determined by the square of the correlation coefficient of 
yXY 
the observed variables x(t) and y(t). 

In classical  statistical analysis of real  variables , the correlation 

coefficient between two variables x and y with zero mean values 

i s  defined as 

I where Cov[x, y) = E [xy] = (rxy represents the covariance of x and 
2 

y, while cr2 and IJ 
X Y 

Note that the square of I? is 

a r e  the variances of x and y, respectively. I 
XY 

1 

2 The notation u = IJ 
x x x  

2 
('OV [xJ Y 1  l 2  (rxy - 

2 2  2 2  
u u  0 - 0 -  

X Y  X Y  

2 
Y YY 

and cr = u will be sometimes employed 
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If complex numbers X, Y a r e  being considered as sometimes 

occur in random process theory, the definitions above ifi-mlving 

expected values of products must  have one variable replaced by its 

complex conjugate. For instance, instead of xy one considers 

XY where Y is the complex conjugate of Y .  Therefore, for  
* * 

complex variables, the square of the c2rrelation coefficient becomes 

9 

r 2  = E[XY*] E[XY*] - - E[XY*]E[X*Y] 

xy E[XX*] E[YY*] E[XX*]E[YY*] 

I E[XY*] 1 - I'XY 1' 
2 2  - 2 2  

- - 

2 
X X Y Y 

Observe now that if u is replaced with S (f), u 2  with S (f), and 

the covariance u with the c ross  -power spectral  density function, 

S 

Eq. (83). To be specific 

xy 
(f) ,  then the coherence function has  a form identical to that of 

XY 

One difference exists between Eq. (81) and correlation 

coefficients defined as a function of the t ime difference T for a 

random process. Fo r  random processes ,  the correlation coefficient 

is defined as 
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where the numerator R (T) i s  the cross-correlation function a t  an 

a rb i t ra ry  T but the denominator factors a r e  the autocorrelation 

function values a t  T =  0 only. 

If a normal distribution is assumed, the relation given by 

X y  

Eq. (80) is the analogy of a standard statistical result  

= u  ( 1 -  8 )  2 
Q 

Y I X  Y X y  

where the spectral  variables replace original variables. 

(86) 

least  square regression line is the original variance, u 

Equation 

says in  words that the variance of the residuals about the linear 
2 

Y 
, reduced 

by the factor (1 - r-). 
The sketch below il lustrates this idea.  

2 original distribution 
. [of y with variance Q 

Y 

line 

line with 
:xi ? distribution of the residuals 

o r  * y p e .  reduced variance 2 

X- 
(-original distribution of x 

with variance 2 
U 

X 
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To derive Eq. (86), consider the two-dimensional normal 

density function p(x, y) defined by the equation 

The mean values of the one-dimensional distributions p and p 

a r e  assumed to be zero and Eq. (87) therefore is determined by the 
2 2  three remaining parameters  u , u , and the correlation 

X Y  
coefficient r=  I' - One now wants to cnr-pate the variance of y 

given x denoted by u . The conditional density of y given 

x, p(y1x) is defined by 

X Y 

q 2  
Y Ix 

where 

P(Y 

P x) = U l / Z  1 [$I 
F o r  the case at hand this is 

Considering this as a distribution of a single random variable y 

when x is a constant, the expected value and variance may be calcu- 

lated as 

E(y Ix) = /m yp(ylx) dy = (91) 
-a 

2 2 2 2 2 
V a r  (ylx) = E(y Ix) - E (ylx) = u Y l x  = uY (1 - r (92)  

and 
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The regression line for  y on x (passing through the origin 

since the mean values IJ. and p. are assumed zero) is now obtained 

by setting y equal to the expected value of Eq. (91), namely, 

y E(y1 x) x. This explains Eqs. (77) and (78). Then Eq. (92) 

gives the variance about this regression line which explains Eq. (80). 

X Y 

A 

It is worthwhile to note that Eq. (87) can be expressed in matr ix  

notation as 

1 

p(x) = Z n f i  

where x is the two-dimensional vector 

and P is the covariance matr ix  

(93) 

with 

The covariance matr ix  here is analogous to the cross-power spectra 

mat r ix  defined by Eq. (62) .  

normal distribution is immediately obtained by Eq. (93), by just 

letting the vector and matr ix  represent n-dimensional instead of two- 

dinemsional quantities. The factor (1/2w) in Eq. (93) is actually 

1 / ( ~ r ) ~ ’  in general. 

Also the definition for an n-dimensional 

Jus t  as the denominator of Eq. (74) is the ordinary spectrum of 

the residuals, the numerator is the cross-power spectrum of the 

residual process.  In this sense, the quantity S ( f )S  ( f ) /S  ( f )S  (f)  1 2  2y 22 l y  
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i s  analogous to the coherence function in that it is the factor necessary 

to adjust the original c ross  spectrum S (f) to obtain the residiial 
lY 

cross spectrum. 

To be more specific in this interpretation, one must make 

further comparisons with classical  regression analysis. 

one must consider all three variables y, x and x Now, one 

wants to calculate the covariance of the residual of y given x with 2 ’  
the residual of x given x when x is not independent of x 

Firs t ,  note by Eqs. (77) and (78) that the residual Ax is defined by 

However, 

1’ 2 ’  

1’ 1 2 ’  2 

1 

Similarly, the residual Ay is defined by 

AY = Y -k) 2 
X 
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Next, the covariance between A x  and Ay, called the "partial 

covariance," is given in complex t e rms  by 

1 

U U x x  1 2  

2 2  
U x x  2 2  
x x  

I 8 

8 
= Wx,y ) - 

U 

yx2 

x x  2 2  

U 

I x x  1 2  
E(x x ) -- 

1 2  u 
2 2  x x  

U U 

x1x2 yx2 
+ 2  

U x x  2 2  

u u  u u  
x2y X l X 2 1  

x y  x x  
1 -  - - 0 -  

2 1 2  
( 9 9 )  

L L 

X X 
F o r  symmetry, u and u have been denoted above by u and x x  2 1 1  1 
U x x  2 2' 

The numerator of Eq. (74) is now obtained directly by replacing 

with S (f), u with S ( f ) ,  and u x x  
2 2  12 x2y 2 Y  

U with S ( f ) ,  uX 
x l Y  1Y 1 2  

with S22(f). The accepted notation for u is u 
A x p y  XIY'  x2 

Therefore, one defines the numerator of Eq. (74) as the c ross -  

spectrum of the residual input process with the residual output, 

namely 

s ( f )  = Sly(f) (100) 
ly .  2 

41 



Analogous to the residual spectrum of the x ( t )  variable given x,(t), 

~ i i e  has a residuai spectrum of y(t) given x2(t). 
1 I 

This is 

S = s [l - y ' ]  
YY' 2 YY 2 Y  

2 
Is2y I 

= YY [l - syy~221 

given by Ea_. (80) may 1 1 - 2  The above results and that for S 

be obtained in a more general way by considering a matr ix  formu- 

lation. Note that Eq. (80) may be written in the form 

Consider the cross-power spectrum matr ix  of Eq. (62) for 

the three variables y(t), x (t),  and x (t) partitioned a s  indicated 1 2 
below where x ( t )  is the quantity being interpreted as the predictor. 2 

xx I I 

I 

s21 i s22 

Now, let the 2 x 2  matr ix  in the upper left replace S (f) in Eq. ( loo ) ,  
le t  the 2 x 1  column vector in the upper right replace S ( f ) ,  let  i t s  

complex conjugate transpose replace SZl(f), and let  S ( f )  remain 

unchanged. A matr ix  S of partial  cross-power spectra is then 

defined analogous to Eq. (102) by the following matrix equation: 

11 

12 

22 

xx' 2 
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- - 
xx' 2 
S 

" 1  Y l  
S 
YY 

- S 1Y s1 1 I- 
1 2s2 

[Sly - * 

-"'I s - 1 p  22 y2 , sY2J 

.s12 

s --'i ZS21 

y1 s22 

w2 J 
s l l  - s22 

In the above, S instead of S(f) has been written in the interest  of 

simplicity. 

In classical  statistics, one defines a squared "partial correlation 

coefficient" between residual variables by replacing the ordinary co- 

variance and variances in Eq. (82) with the residual covariance and 

residual variances. 

be defined as 

Analogously, a partial coherence function can 

2 
Yly. 2 

I s ly.  2 I 2  
S 

syy.2 11.2 

2y s12 sy2 s21 
[Sly - s 2 2  ] [Sy1 - SZ2 1 
Lyy - 4 Is2 I [Sl1 - I s12 s222] I 

s22 

lSlYlZ [l - 4 s12 - --3 2s21 

- - slys22 syl s22 
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2 
The quantity y ( f )  is interpreted a s  the coherence function 

between the residuals of y(t) and x (t) after the least  squares pre-  
1 

diction from x (t) has been subtracted out. The partial correlation 

coefficient in classical statist ics may be interpreted a s  a correlation 

coefficient between two variables when the effect of a third variable 

has  been removed so that the spurious correlations a r e  suppressed. 

The analogous interpretation may be applied to the partial coherence 

That is, a high ordinary coherence between two processes could 

indicate a linear input/output relation between the two processes,  

but in reality this may be a spurious relation due to the correlation 

of the apparent input with another input variable. 

coherence function is calculated, the more realist ic low coherence 

would be uncovered. 

ly. 2 

2 

If the partial 

Alternately, the opposite effect may occur where the partial  

coherence will be larger  than the ordinary coherence. 

fo r  example, when two separate inputs both pass  through linear systems 

and make up the single output. 

either input and the output is unity due to the linear relations, but the 

ordinary coherence will be less  than unity. 

input contributes to the output and this fact is not accounted for in the 

computation of the ordinary coherence function between the output 

and a single input. 

in  the next section. 

This occurs, 

Then the partial  coherence between 

This follows because each 

This case i s  illustrated by the numerical example 

1 
Consider the special case of Eq. (105) when the two inputs x 

and x a r e  independent, that is S ( f )  = 0. A partial  coherence 

function y 
12 

is then given by 
2 2  

l y*  2 
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2 
Yly. 2 

I SlYl 

is strictly a coherence function it must be bounded by 
2 

Since y ly.  2 
unity which implies 

2 2 
Y l y  I 1 -Yzy 

This is the result  to be expected. Since the output y(t) is made up of 

the s u m  of two outputs y ( t )  and y (t), it is natural to expect that a 1 2 
large coherence between one of the inputs and the over-all output 

necessarily implies that the contribution from the second input is 

small, and therefore has  small coherence with the over-all output. 

These ideas will be illustrated with examples in Section 7. 5. 

For more than two inputs the nature of the solution retains the 

same form a s  in the two-input case. 

apply through analogies with more advanced multi-variate statistical 

theory. 

Also, similar basic interpretations 
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7 . 5  APPLICATION O F  COHERENCE FUNCTIONS 

7.5.1 Case of Independent Inputs 

The specific example of measuring one of the N inputs relative 

to the output will now be discussed. 

inputs x,(t), x2(t), . . . , s ( t )  are statistically independent. 

y(t) represent the output. 

x (t) and y(t) which are being measured. The system will be 

assumed to be a linear constant parameter  system, and i t  will be 

assumed that the amount of noise in  the input and output measuring 

devices is negligible. 

Assume for this case that the N 

Let 

Assume also for  concreteness that it is 

1 

Now suppose that the physically realizable 

power spectra G ( f )  and G (f) are measured or computed 

from the amplitude time histories.  x1 x x  1 1  
The coherence function for  this 

case then becomes 
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Therefore, if any of the inputs other than x ( t )  a r e  nonzero, their 

power spectra will be nonzero and 
1 

The amount by which the coherence function is l e s s  than unity 

i a  seen to be dependent on the size of the square of the gain factors 

of the frequency response functions associated with the other inputs 

and the size of their power spectra,  relative to the power spectra and 

squared gain factor associated with the measured input. 

a r e ,  of course,  the output power spectra corresponding to their 

respective input power spectra. Therefore, the coherence function 

has  a useful application as a tool in detecting the presence of non- 

measured inputs occurring in a system, along with giving some 

indication of their effect on the output. 

These factors 

7. 5.2 Case of Correlated Inputs 

For  simplicity, the case of two correlated inputs will be 

considered in detail. 

develop the general case of N correlated inputs. 

More advanced arguments a r e  needed to 

Let  x ( t )  and x (t)  be the two inputs and y(t) = y (t) t y  ( t )  

Assume also that only 
1 2 1 2 

be the output a s  considered in Section 7.4. 

one input, say x ( t ) ,  and the output y(t) a r e  being measured. The 

one-sided power spectral density functions a r e  Gx ( f )  G Gl(f ) ,  

G 

frequency response functions a r e  Hl(f) and HZ(f).  

1 

1 
(f)  z G2(f) for the inputs and G ( f )  for the output. The 

x2 Y 

The coherence function between x (t) and y(t) is now computed 
1 

and it  will be seen to be l e s s  than unity when a second input x (t)  is 2 
active. Since x (t) and x ( t )  a r e  assumed to be correlated,  

Eq. (54) is used for  the cross-power spectrum and Eq. (52) applies 

for the output power spectrum. 

1 2 
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The coherence function is given by 

2 

Writing out in full, Eq. (108) becomes 

Now, the numerator of Eq. (111) is l e s s  than the denominator since the 

only unequal factors a r e  I H2(f)l /G12(f) I and IH2(f) I Gl(f)G2(f). For  

these factors, 

2 2 2 

since this is merely the statement that the coherence function between 

the two inputs must be l e s s  than one. 

y (f) between the first input and the output must  a lso be bounded by 

unity. 

Hence the coherence function 
2 
1Y 

Actually, of course, any t rue  coherence function is l e s s  than 

unity since i t  is analogous to a correlation coefficient which is 

bounded by unity. The explicit form of the relation given by Eq. ( 1  11) 
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is useful since it shows that the amount less than unity is determined 

to a certain extent by the magnitude of the coherence between the two 

inputs. That is, if the two inputs a r e  linearly related, then the 

coherence function between the output and either one of the inputs is 

unity. 

then the coherence between one input and the over-all output will tend 

to become small. 

example which follows. 

However, if the coherence between the two inputs is small ,  

These ideas will be illustrated in the numerical 

7.6 NUMERICAL EXAMPLE FOR THE CASE OF TWO INPUTS 
AND ONE OUTPUT 

A simplified numerical example will now be worked out to 

i l lustrate the preceding formulas and ideas. 

and one output will be considered. 

low pass  f i l ters  have an extremely simple analytical form,  and 

therefore will be used for the example although no direct  structural  

analogy exists for this case. 

x (t)  and x (t) a r e  white noise and therefore have constant power 

spectral  density functions. 

The case of two inputs 

Frequency response functions of 

It  will be assumed that both inputs 

1 2 
Two cases  for the inputs will be con- 

side r ed: 

Case 1: 

Case 2: 

Uncor r elated Inputs 

The two inputs will be assumed to be uncorrelated for 

all T. Therefore, they have a cross-power spectral  

density function and coherence function identically 

zero for all frequencies. 

Correlated Inputs 

The inputs will be assumed to have a delta function for 

a cross-correlation function at time T = 1 .O seconds. 

Therefore, the cross-power spectra will be nonzero 

and in turn the coherence between the inputs will be 

nonzero. 

0 
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The following values will be assumed for a numerical example. 

Assumed frequellcy response functions: 

s T = . 0 5  sec 
1 

Hl(f)  = 1 t j2afTl 1 

, T = .10 sec 
1 

H2(f) = 1 t j2rfTZ 2 

Power spectra of inputs: 

2 

2 

G 11 ( f )  = kl = .O2v /cps  

G 22 ( f )  = k 2 = . 0 1 v  / cps  

Cross-power spectrum of inputs: 

G ( f )  E 0 
12 Case 1: R x1x2(r) 

k3 = 0.81k k 1 2  

0 -j2Tfr 
G (f)  = k3 e 12 

(G12(f) 1 = k3 ; e(f) = -2 r fT  0 

For concreteness in the subsequent computations, it will be 

assumed that ten cycles per second is the frequency of interest  and 

therefore values of the various quantities will be calculated a t  the 

point f = 10 cycles/second. 

response functions will be of interest  in  the subsequent computations 

The absolute value of the frequency 
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and also the real and imaginary parts. These quantities are given 

2 1 
by 

JH.(f)l= 1 
1 t (2rfTi) 2 

, i =  1 , 2  (117) 

2rfTi 
i =  1 ,2  (1 18) 

1 
- j  1 t (2rfTi) 2 ,  H.(f) = 

1 1 t (2rfTi) 

Referring to Eqs. (52) and (54) for correlated inputs, the output 

power spectral  density function and the cross -power spectral  density 

functions are given by 

G =IH1( 2 Gll  t IH21 2 GZ2 t 2 Re[H H G 3 (119) 1 2 12 YY 

G. = H 1 G. 11 t H 2 G i 2  , i =  1 , 2  (120) l Y  

Note that the fact that the s u m  of a complex number and its complex 

conjugate is equal to twice its real par t  has been used in obtaining 

Eq. (1 19). Evaluating Eqs. (1 19) and ( 120) for the particular 

example at hand, one obtains for  Case 1 and Case 2 the following 

re sult s : 

Case 1 : Uncorrelated Inputs 

k2 
2 t kl 

G (f) = 
YY 1 t (2rfT1) 1 t (2rfT2) 

kl k2 

2 1Y ( f ) =  1 t j2rfT1 ' G2y(f)= 1 t j2rfT 
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Case 2: Correlated Inputs 

k2 
2 t kl 

YY 1 t (2rfT1) 2 1 t (2rfT2) 
G (f)  = 

2 
2k3( [l t (2r f )  TlT2] COS 2TfT 0 t 2rf  [T1 - T2]sin 2mf7 0 

t 
2 [ 1 t (2nfT1)'] [ 1 t (2nfT2) 3 

0 - j 2 r f ~  
k; kg e 

1Y (f)  = 1 t j2rfTl 1 t j2rfT2 

0 

G2y(f) = 1 t j2rfT 

j 2rf T 

k2 k e  3 
1 t j2rfT2 

1 

Assume now that only the spectral  relation given above have been 

measured o r  a r e  known by some other means, and that the form of 

the frequency response function is not known. 

frequency response function is to be estimated from the first input 

x (t)  and the output y(t) and that x (t) is not known to exist. If 

one computes an  estimate of the frequency response function H(f) 

from the ratio of the cross-power spectrum to the input spectrum, 

Also assume that the 

A 
1 2 

the results of the two cases  a re :  

Case 1 : Uncorrelated Inputs. 
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Case 2 :  Correlated Inputs - j 2af T, 
V k e  

1 3  t -  1 G 

G1 1 1 t j2afT1 kl (1 t j2rfT2) 

A 
H(f) = 3 = 

However, the t rue frequency response function is given in either case 

by Eq. (74) which is for this example 

1 t j  2rf T 
k2 1 0 

j 2 ~ r f ~  
k e  3 
1 t j2rf  T2 1 tj2afT 

0 
-jZaf-r 

t t 

k2kl - k t  

[’ tj2afT11 - 
klk2 -kf 

1 

1 
1 t j2afT 

A similar result  may be obtained for H (f) .  

As can be seen from the above, the correct result  is obtained 
2 

for Case 1 when the inputs a r e  uncorrelated, but a considerable e r r o r  

is introduced in  Case 2 for  correlated inputs. 
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The relative e r r o r ,  E ,  for Case 2 is 

- j 2 n f ~  
H2 k e 

H1 kl 

3 - -  - 

A 
H1 - H  

€ =  

H1 

0 - j  2nf 7 
(1 t j2*fT1) k3e 

(1 t j2rfT2) kl  
- - 

0 -j2nf-r 
k e  3 

H2 kl  

H1 

2 
- 

If the above result, Eq. (126), is evaluated a t  f =  10 cps, the following 

value is  obtained. 
I 

That is, there is approximately an 11% e r r o r  in the measurement of 

the frequency response function when the two inputs a r e  correlated 

and the effect of the second input is neglected. 

Consider now the computation of the ordinary coherence function 

between the first input and the output. 

function for the case of the independent inputs is obtained f rom 

Eq. (108) while the coherence function for the case of correlated 

inputs is obtained f rom Eq. (1 10) o r  Eq. (1 11). 

The value of the coherence 
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The results for this example a r e  

Case 1 : Uncorrelated Inputs 

2 1 
Y l y ( f )  = 

Case 2 :  Correlated Inputs 

where 

klkj ( [ l t ( Z r f )  TlT2]cos 2TfT 0 + 27rf[T1 - T 2 I s in 2 r f 7  0 J 2 

( 1 t [ 2 ~ f T  1] 2 ,  ( 1 t [ 27rfT2] 2 ,  

Later  par t s  of this example require the coherence function between 

the second input and the output also. 
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These a r e  given by 

Case 1: Uncorrelated Inputs 

2 1 
v =  

2Y 

Case 2: Correlated Inputs 

3 
k 

2 t 
k2 

1 t ( 2 ~ r f T , ) ~  1 t ( 2 r f T , )  

1 t (27rfT2) 2 t k lk2  
2 

1 t (27rfT1) 
+ 2 

where 

c t ?  r *  1 
Re H ' G  H G 1 RelHlG21H2G22J = L 1 12 2 22 

2 
- - k2k3( [l t(2rf)  TlT2]cos 2rf7 0 t 27rf [T1 - T2] sin 27rf~ 0 

(1 t [2rfTl] 2, (1 t[ 27rfT2] 2, 

These ordinary coherence functions are now evaluated at the 

First, the following quantities will be calculated point f = 10 cps. 

which are useful for the remainder of the computations: 
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kl = Gll = .02, k = G = .01, k = G = ,0113137 
2 22 3 12 

= .09200 
2 1 

a = / H 1 l  = 1 t (2rfT1) 2 

= .02470 
2 1 

b = I H d  = 1 t (2rfT2) 2 

HI = a - jar = .09200 - j(.  289026) 

H2 = b - jb2r = .02470 - j(.  155195) 

F r o m  Eq. (54) one obtains for  correlated inputs, 

G = ak t bkj - j[nakl t r2bk ] 
= (.02)(.09200) t (. 0113137)(.02470) - j(3.14159)[(.02)(.09200) 

1 Y  1 3 

t 2(.0113137)(.024~0)] 

= .00211945 - j(.00753636) 

= ak 3 t bk2 - j [yak3 t r2bk2]  G 
2Y 

= (.0113137)(.09200) t (.01)(.02470) - j (3.14159)[ (.0113137)(.09200) 

t 2( .o i ) (  .02470)] 

= .00128786 - j(.00482190) (133) 

F r o m  Eq. (52) one obtains for correlated inputs, 

G = akl t bk t 2k Re YY 2 3 

= (.02)( .09200) t (.01)( .02470) t (.0113137)( .0942558) 

= .00315338 ( 134) 
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where 

8 
2 P.e HlH2 = 2[ab t (an) (b~Tj]  

2[(.09200)(.02470) t (.289026)( .155195)] 

.0942558 

The coherence functions then a r e  as follows: 

Case 1: Uncorrelated Inputs. From Eqs. (127) and (129), 

1 - - 2 
Yly .02470 ' 

' (%) ( .09200) 

1 - - 2 
.09200 

(%) [ ,02470) 
y2Y 

= .882 

= .118 

Case 2: Correlated Inputs. From Eqs. (131) to (134), 

(135) 

As a check on 

- - ( .00211945)2 t ( .00753636)2 
(.02)( .00315338) 

( .00128786)2 t (.00482190) 2 
- - 

(.01)( .003 15338) 

= .971795 

= .789924 

the above computations, the Case 2 coherence 

functions may be calculated from Eqs. (128) and (130). 

2 - (.09200)(.0004)t (.02470)( .000128) t (.02)( .0113137)( .0942558) = .971802 - 
"y (.09200)(.0004)t (.02470)(1)002) + (. 02)(. 0113137)(. 0942558) 

(137) 
2 - (.09200)( .000128) t (.02470)( .0001) t (.01)( .0113137)( .0942558) = .789940 - 

"y (.09200)(.0002) + (.02470) (.0001) t (.01)(.0113137)(.0942558) 

58 



As can be seen for Case 1, Eq. (135), the input with the 

greatest  effect on the output has  by far the largest  coherence with 

the output. That is, the input x ( t )  has the greatest  power spectra 1 
and is also passing through a l inear system with the largest  gain 

factor, and is therefore contributing by far  the greatest  amount to 

the output y(t). For  Case 2, Eq. (136), the case of correlated 

inputs, there is not as large a difference as there is in the case of 

uncorrelated inputs. This is to be expected, of course, since there 

is a relatively large correlation between the two inputs to the system. 

One should note that, depending upon which computing procedure was 

used, a slightly different answer is obtained in Eqs. 

As a matter of fact, differences a r e  obtained in the fifth decimal 

place although six significant figures were maintained throughout the 

computation. 

quantitiea a r e  not basically computationally stable, and therefore 

many significant f igures must be maintained throughout the course 

of the computations in order  to make sure of correct  results.  

(136) and (137). 

This suggests that the formulas used to compute the 

The computation of the partial  coherence functions fo r  the two 

cases  will now be i l lmtrated.  

f rom Eqs. (105) for  Case 2, and from Eq. (106) for  Case 1. One 

should note here  that the second line of Eq. 

These quantities may be calculated 

(105) is basically an 
2 

the denominator. If the quantity y is very close to 1, much 

significance will be lost  when the subtraction from 1 is performed 

which will result  in essentially dividing by zero. 

portion of the f i re t  line of Eq. 

in  Case 2 below. 

the two cases  a r e  given below. 

unstable computational form. This is due to the factor (1 - Y Z Y )  in 
2 
2Y 

The righthand 

(105) wi l l  be used for  the computations 

The values for the partial coherence function for 
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Case 1: Uncorrelated Inputs. From Eq. (106), 

2 

Case 2: Correlated Inputs. F r o m  Eq. (105), 

2 
2 IG2J IGl2I2 GlyGy2G21 

IGlyl + G3 2 3 - 2 R e [  G22 I 
'I l y -  2 by,- Y IG2 G222][G11 I 

- 1 5 2  I '3 
G22 

) 
.000128 

.o 1 )(.02 - .0000249093 
.01 (.00315338 - 

= 1.00 - .0000047694 
.0000047696 

- 

where r 

2 R e l  G1 'Gi2 ZG12 J =  ? 2 R e [ G  G ] 
1Y Y2 

= ,0113137 .ol )2[(.00211945)(.00128786)+~.00753636)(.004821~0)] 

= .0000884033 

As expected, the values of the partial  coherence function fo r  

thie particular example turn out to be unity. This is due to the fact 

that true linear relations exist for  this example and the only reason 

the ordinary coherence functions were  less than one is due to the fact 
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that the second input obscures the result of the first. Additional 

factors present in  practical situations such as noise and system non- 

l inearit ies,  in addition to unaccounted for inputs, will a lso tend to 

maintain the value of the coherence function below unity. However, 

fo r  this ideali ted example, calculating the partial  coherence has  the 

effect of subtracting out the effect of the second input, and therefore 

the t rue linear relation is exposed as indicated by the ideal value 

fo r  the coherence function. 

This particular situation cannot be expected to exist in general. 

AB a matter of fact, the opposite effect is just  as likely to occur. 

That is, the basic coherence function may be la rger  than i t  should be 

due to the fact that, although no l inear relation exists between the 

one input being considered and the output, a second input is linearly 

related to the output and happens to be highly correlated with the 

f i r s t  input. In this situation, the partial coherence function would 

Uncover this fact  by having a much smaller value than the ordinary 

coherence function. 

It is to be observed that a1tho;gh a relatively simple example 

was chosen, the computations a r e  still quite involved and 

numerous. This suggests that when the computations a r e  being 

performed on experimentally obtained data where several  points of 

the power spectral  density functions a re  available, several  specific 

frequencies a r e  of interest, and possibly more  than two inputs exist, 

that a digital computer will be an  essential tool for  use in the com- 

putations. This becomes apparent when one considers the fact that 

most  equations essentially result  from a system of simultaneous linear 

equations. 

goes up as the square of the dimensionality of the problem. 

with twice as many inputs, there will be four t imes as many 

computations. 

This implies that the amount of computation essentially 

That i s ,  
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One important aspect of the over-all  problem has been neglected 

in the precedirlg discussion for  the multiple input case.  

problem of statistical measurement uncertainties. That is ,  one should 

account for the sampling distributions of the quantities being considered. 

The result  of these considerations leads to confidence intervals about 

the various quantities of interest  in the multiple input case, just a s  

gain factor and phase shift confidence intervals a r e  given in Section 6 

for the single input case. 

This i s  the 

This concludes the example. 

7.7 EXAMPLE OF DETECTION O F  SPURIOUS COHERENCY 

The preceding example in Section 7 . 6  will now be modified to 

illustrate the application of the partial  coherence function in another 

way. In Section 7.4 it was pointed out that 

a) the partial coherence function could be greater than the 

ordinary coherence function, or  

the partial coherence function could be less  than the ordinary 

coherence function. 

Case (a) was illustrated in Section 7 . 6 ,  and Case (b) will now be 

illustrated . 

b) 

The situation where a too large ordinary coherence function can 

occur is a s  follows. Suppose a signal x ( t )  i s  being measured which 

is believed to be an input to a linear system, but in reali ty contributes 

nothing or very little to the output y(t) which is being measured. 

If for some reason this signal happens to be highly correlated with a 

second input x (t) which actually contributes everything to the 

measured output except for some measurement noise, then the signals 

x (t)  and x (t) will have a large coherence which will result  in a 

large coherence between the f i r s t  input x (t) and the output y(t). 

1 

2 

1 2 

1 
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This would tend to indicate some linear relation existing between the 

input x (t) and the output y(t) which i s  in reality physically spurious. 

That is, the input x (t) has no cause and effect relation with the 1 
output y(t). The sketch below illustrates this situation. 

1 

n(t), (noise) 

As indicated in the above sketch, the f i r s t  input x (t) contributes 

The f i r s t  frequency response function Hl(f)  is 
1 

nothing to the output. 

shown to be identically zero to satisfy this situation. 

input x ( t )  i s  assumed to be actually passing through a linear system 

and contributing almost everything to the output y(t). 

contribution to the output y(t) is assumed to be a small  amount of 

measurement noise denoted by n(t). 

statistically independent of both of the inputs and the output, and, 

therefore incoherent with either input or the output. 

The second 

2 
The only other 

This noise i s  assumed to be 

The cross-correlation between the inputs x (t) and x (t)  i s  1 2 
assumed to be the same a s  in the example of Section 7 .6 .  

power spectra of the inputs and the frequency response function H (f)  2 
i s  assumed to be the same a s  in the previous example. 

quantities a r e  a l l  listed below a s  is  the assumed power spectra for the 

measurement noise G (f) .  

Also, the 

These 

nn 
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Assumed frequency response functions: 

, T = .10 sec 1 
2 ( f )  = 1 t j2afT2 2 

Power spectra of inputs: 

11 1 
2 

2 

G (f) = k = . 02v  /cps  

Gz2(f) = kZ = . O l  v / cps  

G 
2 

(f) = k4 = .OOOOlv /cps  
nn 

Cross-power spectrum of inputs: 

fo) , T = 1 sec k36(7 - 0 

x x  ={ 0 , 
R 

1 2  

From the above data, the coherence function between the two 

inputs is found to be 

= .64 - - - - 2 

y12 G l l G 2 2  k lk2  
(143) 

The ordinary coherence function and the partial  coherence function 

between the f i r s t  input x (t) and the output y(t) a r e  now of interest. 

The output power spectra and the cross-power spectra between the 

inputs and the output a r e  needed for these calculations, and a r e  

1 
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therefore given below. 

Eqs. (119) and (120) except that the noise power spectrum must be 

added to the output power spectra. 

on the cross-power spectra, however, since it is assumed to be inde- 

pendent of each of the inputs. The results for this example a r e  

These quantities may be obtained from 

The noise power spectra has no effect 

G = H G  l y  2 12 

2y 2 22 G = H G  

(144) 

Evaluating these quantities at the point f = 10 cps, 

G 

G 

G 

= bk 

= H k 

= H k 

t k4 = (. 02470)(. 01) t . 00001 = .0002570 YY 2 

l y  2 3 

2y 2 2 

= (. 02470 - j [. 155195])(. 0113137)=. 000279448 - j( .  00175583) 

= (. 02470 - j [. 155195])(. 01) = .0002470 - j ( .  00155195) 

The ordinary coherence function between the f i r s t  input and the output 

then is 

2 
(. 00279448)2 t (. 00175583) - .00000316103 = .  614986 

2 
lGlyl - - - - 2 

' l y - G  G (. 02) (. 002570) .00000514000 
11 YY 

An alternative computational method for a check i s  a s  follows. 

= . 6  15093 1 - - 1 - 
- 1 (.02~(.000011 1.562500 t .063271 

.64 ' .00000316103 
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As can be seen f rom Eqs. (145) or  (146), the value for the 

coherence between the f i r s t  input and the output, namely 0.615, is 

almost the same a s  the coherence between the two inputs, 0.64, 

Eq. (143). 

cover the fact that this ordinary coherence function indicates a spurious 

relation. When Eq. (139) is applied to this example, the value of the 

partial coherence function, y (f), is found to be zero. These 

calcylations a r e  given below. 

However, the partial  coherence function will now un- 

2 
lye 2 

GlyGy2G21 
2 G 2 2  ] 

G, 7 

lH2l 2 2  “22][G11 - ‘G1J2]  

[lH212G22 + Gm - G22 
G22 

2 2 2 
- - 4H21 IGl2I2 - 2 k 2 1  IG12 

= o  (147) 

Of course, a value of zero for the partial  coherence function would 

not be obtained in a rea l  situation, although a very small value might be 

obtained. However, this example immediately i l lustrates the application 
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of the partial  coherence function in uncovering this type of situation. 

This concludes the example. 

7.8 INFERENCES POSSIBLE FROM EXPERIMENTAL RESULTS 

Consider the situation where one has measured some sort  of 

response variables, which a r e  stationary random processes,  on 

three points of a structure. 

engineering information is available so as  to determine which of the 

processes  may be considered inputs or  outputs associated with linear 

systems. 

example, if two of the outputs may be considered a s  independent inputs 

to linear systems whose outputs add to make up a third output. 

Alternatively, it might be that two of the inputs a r e  partly related and 

one of them ,>asses through a linear system whose output is the third 

process. 

functions to this type of problem will now be illustrated. 

Assume for the present that no prior 

The problem is therefore to determine in some way, for 

i 
I 

, The application of the ideas of ordinary and partial coherence 

Let  the three response variables be denoted by x (t), x (t), and 1 2 
xg(t). 

functions H (f), H2(f), and H (f)  relating the pa i r s  [x (t), x (t)]  , 
[x2(t), x3(t)] - , and [xl(t), x2(t)] respectively. See Figure 3 below 

which i l lustrates these conjectured relations along with coherence 

functions between them. 

Assume the possibility of existence of frequency response 

1 3 1 3 
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Figure 3 .  Poss ble Relationships Between Three Variabl 

An object of an engineering examination of these three variables 

x (t), x (t), and x (t) might be to decide which way the arrows in the 

above sketch should point and whether o r  not one or  more of the frequency 

response functions may be considered essentially zero. 

aware of the fact that, mathematically speaking, it is only meaningful 

to calculate the degree of the linear relationships between the Fourier 

transformed variables X (f), X (f), X (f)  (i. e . ,  spectral  variables). 

The determination of the direction of the relation, that is ,  determining 

which is the cause and which i s  the effect, i s  of physical rather than 

direct mathematical significance. 

1 2 3 

One should be 

1 2 3 

Attaching a direction to the arrows in the sketch can in principle 

be determined from an examination of the cross-correlation function 

between the variables. 

correlation function, these can be defined so that positive values for  

the time delay, T, will be physically meaningful. 

the cross-correlation function R 

If any significant peaks occur in the c ross -  

Fo r  example, if 

(T) has a peak a t  T~ = 1 sec. ,  x x  
1 3  
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then the direction of the system would be from x to x On the 

other hand, if a peak of R (7) occurred a t  T = -2 sec. ,  then 

the direction of travel 

however, that this is only a physical requirement and that as fa r  a s  

the mathematics is concerned, there is nothing wrong with negative 

t ime delays. 

1 3' 

x x  0 
would be from x to x Note, 3 1' 

Assume now that the power spectra, GI1, G22, G33, and cross-  

have been measured. The ordinary G12' G13' G23' power spectra, 

coherence and partial  coherence functions may then be calculated from 

Eq. (84) and Eq. (105), respectively. As a specific example, 

assume the resul ts  a r e  a s  follows. 

1 . 3  

= 0.50 - - 
'23 GZiP = 0.50 " -  6 -  = 0.05 

'12- G, ,G,, '13 - GllG33 
1 1  LL !'3 3 

2 2 
13 23 The fact that the ordinary coherence functions y and y 

a r e  somewhat less than unity while the respective partial  coherences 

a r e  approximately one implies that x and x a r e  both linearly 

related to x 

implies that the opposite input in each case is obscuring the true linear 

relation, but when these effects a r e  subtracted out to compute the partial  

1 2 
The ordinary coherence functions being l e s s  than one 

3' 
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coherence function, the true linear relations appear. 

terms of the F m r i e r  transforms of the variables, one can visualize 

these relations by considering X a s  being compared with 

Speaking in 

1 
X = X H t X H for the ordinary coherence function. However, for 

3 1 1  2 2  
the partial  coherence function between X and X the effect due to 

X is subtracted out. The comparison then i s  between X and 
1 3' 

2 1 
- H X = H X indicating the direct  linear relation. F rom these 

x3 2 2  1 1  
results along with the fact that the coherence between X and X is 

essentially zero, one can reasonably infer that Figure 4 represents  the 

physical situation. That is ,  x and x a r e  independent inputs to 

linear systems whose outputs add and make up an  output x 

that the values of the partial  coherence functions a r e  essential infor- 

mation in making these decisions. 

variables a r e  shown to more easily indicate the existing relations. 

1 2 

1 2 
Note 

3 '  

In Figure 4, the Fourier transformed 

Yl2'0 2 k X 3  = HIXl tH2X2 

Figure 4. Possible System Diagram for Experimental 
Results with Independent Inputs 

It is conceivable, but not likely, that the arrows in Figure 4 

could point the opposite direction. 

somehow x is broken up into independent components. Then these 

components a r e  passed through linear systems to obtain x and x 

For  this to occur it would mean that 

3 

2' 1 

70 



N .=;i 

As mentioned before, the cross-correlation function would give infor- 

mation to determine this fact. 

being the proper system diagram, Eq. (72) could be applied to solve 

for the frequency response functions Hl(f)  and H2(f). 

gain factors and phase shifts can be obtained. 

Assuming Figure 4 i s  accepted a s  

From these, 

A second possible set of experimental resul ts  might be the same 

a s  given by Eqs. (148) except that the relations between x (t) and 1 
x (t) a r e  changed to 2 7 

= 0.70 
L 2 

'12- 3 y 1 2  = 0.70 , (149) 

The interpretation could now be made that a situation similar to 

Figure 4 applies with certain modifications. Figure 5 indicates 

possibilities that might exist. 

m ,  H1 (f)  

. 
X =H X tH2X2t 

L 3 1 1  
2 

y12 = .70 

D H2(f) 
1 
x2 

Portion of output 

5 c Hl(f) 

1 
-noise added to X 

1 

H2(f) 
* 

Figure 5. Linear System Example for Correlated Inputs 
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The coherence between the inputs could be thought of a s  due ts 

a h e a r  relation between X and X 

some independent noise. Here, the ordinary coherence function 

between X and X for  example, i s  based on the comparison 

between X1 and X = H X t H X t Coh(X X ). When the effect 3 1 1  2 2  1 2  
of X2 is subtracted out, both the H2X2 and Coh (X X ) t e r m s  

drop out leaving the comparison between X1 and H X 

one does not necessarily need to think of some system connecting 

x and x but can consider them just a s  correlated inputs passing 

through two separate linear systems to make up x 

the previous example, the partial  coherence functions which strongly 

indicate the existence of the linear systems H (f) and H (f)  a r e  

important i tems of information. Note that in Figure 5, x could 

just a s  well be considered an  input and x an output depending on 

the cross-correlation function. However, if  these a r e  just being 

thought of as correlated inputs, which is considered as an input and 

which is considered as an output would not make any difference. 

which is partly obscured by 1 2 

1 3 '  

1 2  

1 1' However, 

1 2 '  
Again, a s  for 3' 

1 2 

2 

1 

Consider another possible set  of experimentally obtained values. 

2 
y12 = .75 

Y12.3 = - 7 5  
2 

2 y13 = . 9 8  

= . 9 8  2 
'13- 2 

2 y23 = . 7 5  

= . 0 2  2 
'23- 1 

indicate a linear relation 
2 2 

The large values for  y 13 and y 13'1 
between x1 and x The value for yZ3 might indicate a linear 

relation between x 2  and x 

indicates this to be spurious and due instead to the fact that x1 and 

2 3' 
However, the value fo r  y 2 5  3' 

3' x a r e  correlated while in turn x1 is related to x 2 
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Figure 6 indicates possible causes for  these data. 

I I measurement 
Hl(f) noise component 

2 Y12’ . 7 5  )-* xj = HIXl t N1 

H2(f) = 0 

1 
X = H X  t N  

3 1 1  

4 noise 
component 2 

Figure 6. Linear System Example for  Spurious Coherency 

As before, whether or not a linear system represented by H3(f) is 

assumed to exist might only be a matter of personal preference. 

As the number of variables increases, the possible underlying 

physical situations increase rapidly. It then becomes essential to 

have prior engineering information so a s  to be able to eliminate a 

large number of the possible variations. For  example, if four 

variables a r e  involved, Figure 7 indicates the possible interrelations 

that can exist. 
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Figure 7. Possible Relationships Between Four Variables 

Figure 7 shows that the number of frequency response functions 

has jumped from three for the case of three variables to six. 

physical situation that might exist would be that x x and x a r e  

independent inputs passing through linear systems H1, H2, and H 

to make up x The basic reasoning procedures which apply to the 

three variable case apply here.  

possible alternatives without additional physical information. 

the cross-correlation function provides data to determine the direction 

of the relations, while the relative values of the ordinary and partial  

coherence functions provide additional valuable aids for the analysis 

and determination of the underlying physical conditions. 

A 

1 ’  2 ’  3 

3 

4‘ 
It will not be easy to eliminate 

However, 
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